Modeling the Power Output of Piezoelectric Energy Harvesters

نویسندگان

  • MAHMOUD AL AHMAD
  • H. N. ALSHAREEF
چکیده

Design of experiments and multiphysics analyses were used to develop a parametric model for a d33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output are the piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers

Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...

متن کامل

Design optimization of PVDF-based piezoelectric energy harvesters

Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor,...

متن کامل

Shape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester

The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...

متن کامل

Genetic Algorithm Optimization for Mems Cantilevered Piezoelectric Energy Harvesters

A design optimization based on genetic algorithms for increasing power output performance of MEMS piezoelectric cantilevered energy harvesters has been performed. By employing genetic algorithms, the piezoelectric energy scavenging system with optimized shape and lateral geometries of a unimorph cantilever beam and a proof mass is simulated to achieve a power response improvement of ~1.8× in co...

متن کامل

Temperature effects on output power of piezoelectric vibration energy harvesters

The performance of piezoelectric vibration energy harvesters was studied as a function of environment temperature. The devices fabricated by soft or hard PZTs were used to investigate the effect of material parameters on the thermal degradation of the devices. PZT MEMS device was also prepared and compared with the bulk devices to investigate scaling effect on the thermal degradation. All devic...

متن کامل

VIBRATION ENERGY HARVESTERS OF LEAD-FREE (K,Na)NbO3 PIEZOELECTRIC THIN FILMS

In this study, we fabricated piezoelectric energy harvesters composed of lead-free (K,Na)NbO3 (KNN) thin films and compared the power generation performance with PZT-thin film energy harvesters. Both of the piezoelectric thin films were deposited on Pt/Ti/Si cantilevers by rf-sputtering. The KNN and PZT thin films had perovskite structure, and showed the relative dielectric constants of 744 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011